Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et biophysica acta Mol Basis Dis. 2020;1866(10):165878.
Article
CAS
Google Scholar
Atkinson B, Petersen E. SARS-CoV-2 shedding and infectivity. Lancet. 2020;395(10233):1339–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.
Article
CAS
PubMed
Google Scholar
Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126(10):1456–74.
Article
CAS
PubMed
Google Scholar
Bestle D, Heindl MR, Limburg H, Pilgram O, Moulton H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3(9):e202000786.
Article
PubMed
PubMed Central
Google Scholar
Zolfaghari Emameh R, Falak R, Bahreini E. Application of system biology to explore the association of neprilysin, angiotensin-converting enzyme 2 (ACE2), and carbonic anhydrase (CA) in pathogenesis of SARS-CoV-2. Biol Proced Online. 2020;22:11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 2011;85(2):873–82.
Article
CAS
PubMed
Google Scholar
Bachler M, Bösch J, Stürzel DP, Hell T, Giebl A, Ströhle M, et al. Impaired fibrinolysis in critically ill COVID-19 patients. Br J Anaesth. 2021;126(3):590–8.
Article
CAS
PubMed
Google Scholar
Fakhouri EW, Peterson SJ, Kothari J, Alex R, Shapiro JI, Abraham NG. Genetic polymorphisms complicate COVID-19 therapy: pivotal role of HO-1 in cytokine storm. Antioxidants (Basel, Switzerland). 2020;9(7):636.
CAS
Google Scholar
Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O’Neil A, et al. The pathophysiology of SARS-CoV-2: a suggested model and therapeutic approach. Life Sci. 2020;258:118166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attia YA, Alagawany MM, Farag MR, Alkhatib FM, Khafaga AF, Abdel-Moneim AE, et al. Phytogenic products and phytochemicals as a candidate strategy to improve tolerance to coronavirus. Front Vet Sci. 2020;7:573159.
Article
PubMed
PubMed Central
Google Scholar
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Treatment of SARS with human interferons. Lancet. 2003;362(9380):293–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: a review. Diabetes Metab Syndr. 2020;14(4):367–82.
Article
PubMed
PubMed Central
Google Scholar
Alagawany M, Attia YA, Farag MR, Elnesr SS, Nagadi SA, Shafi ME, et al. The strategy of boosting the immune system under the COVID-19 pandemic. Front Vet Sci. 2020;7:570748.
Article
PubMed
Google Scholar
Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E. A comprehensive review of COVID-19 characteristics. Biol Proced Online. 2020;22:19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Z, Wei Y, Tao C. An enlightening role for cytokine storm in coronavirus infection. Clin Immunol (Orlando, Fla). 2021;222:108615.
Article
CAS
Google Scholar
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: the role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong CK, Ho CY, Ko FW, Chan CH, Ho AS, Hui DS, et al. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin Exp Immunol. 2001;125(2):177–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, John WE. T cell responses in patients with COVID-19. Nat Rev Immunol. 2020;20(9):529–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Min JY, Jang YJ. Macrolide therapy in respiratory viral infections. Mediators Inflamm. 2012;2012:649570.
PubMed
PubMed Central
Google Scholar
Bagheri A, Moezzi SMI, Mosaddeghi P, NadimiParashkouhi S, FazelHoseini SM, Badakhshan F, et al. Interferon-inducer antivirals: potential candidates to combat COVID-19. Int Immunopharmacol. 2021;91:107245.
Article
CAS
PubMed
Google Scholar
Hajimirzaei N, Khalili NP, Boroumand B, Safari F, Pourhosseini A, Judi-Chelan R, et al. Comparative study of the effect of macrolide antibiotics erythromycin, clarithromycin, and azithromycin on the ERG1 gene expression in H9c2 cardiomyoblast cells. Drug Res (Stuttg). 2020;70(8):341–7.
Article
CAS
Google Scholar
Rutigliano JA, Sharma S, Morris MY, Oguin TH 3rd, McClaren JL, Doherty PC, et al. Highly pathological influenza A virus infection is associated with augmented expression of PD-1 by functionally compromised virus-specific CD8+ T cells. J Virol. 2014;88(3):1636–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pauken KE, Godec J, Odorizzi PM, Brown KE, Yates KB, Ngiow SF, et al. The PD-1 pathway regulates development and function of memory CD8(+) T cells following respiratory viral infection. Cell Rep. 2020;31(13):107827.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cullen JG, McQuilten HA, Quinn KM, Olshansky M, Russ BE, Morey A, et al. CD4(+) T help promotes influenza virus-specific CD8(+) T cell memory by limiting metabolic dysfunction. Proc Natl Acad Sci U S A. 2019;116(10):4481–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarke A, Sidney J, Methot N, Zhang Y, Dan JM, Goodwin B, et al. Negligible impact of SARS-CoV-2 variants on CD4 (+) and CD8 (+) T cell reactivity in COVID-19 exposed donors and vaccinees. bioRxiv. 2021;384:403.
Google Scholar
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020;11:827.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia H, Cao Z, Xie X, Zhang X, Chen JYC, Wang H, et al. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 2020;33(1):108234.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horvath CM. The Jak-STAT pathway stimulated by interferon alpha or interferon beta. Sci STKE. 2004;2004(260):tr10.
PubMed
Google Scholar
Tsuno T, Mejido J, Zhao T, Schmeisser H, Morrow A, Zoon KC. IRF9 is a key factor for eliciting the antiproliferative activity of IFN-alpha. J Immunother. 2009;32(8):803–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez NE, Sato F, Kawai E, Omura S, Chervenak RP, Tsunoda I. Regulatory T cells and Th17 cells in viral infections: implications for multiple sclerosis and myocarditis. Futur Virol. 2012;7(6):593–608.
Article
CAS
Google Scholar
Wu W, Dietze KK, Gibbert K, Lang KS, Trilling M, Yan H, et al. TLR ligand induced IL-6 counter-regulates the anti-viral CD8+ T cell response during an acute retrovirus infection. Sci Rep. 2015;5(1):1–14.
Google Scholar
Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The role of interleukin 6 during viral infections. Front Microbiol. 2019;10:1057.
Article
PubMed
PubMed Central
Google Scholar
Haji Abdolvahab M, Moradi-Kalbolandi S, Zarei M, Bose D, Majidzadeh-A K, Farahmand L. Potential role of interferons in treating COVID-19 patients. Int Immunopharmacol. 2021;90:107171.
Article
CAS
PubMed
Google Scholar
Shinozawa Y, Matsumoto T, Uchida K, Tsujimoto S, Iwakura Y, Yamaguchi K. Role of interferon-gamma in inflammatory responses in murine respiratory infection with Legionella pneumophila. J Med Microbiol. 2002;51(3):225–30.
Article
CAS
PubMed
Google Scholar
Tateda K, Ishii Y, Matsumoto T, Kobayashi T, Miyazaki S, Yamaguchi K. Potential of macrolide antibiotics to inhibit protein synthesis of Pseudomonas aeruginosa: suppression of virulence factors and stress response. J Infect Chemother. 2000;6(1):1–7.
Article
CAS
PubMed
Google Scholar
Sugamata R, Sugawara A, Nagao T, Suzuki K, Hirose T, Yamamoto K, et al. Leucomycin A3, a 16-membered macrolide antibiotic, inhibits influenza A virus infection and disease progression. J Antibiot (Tokyo). 2014;67(3):213–22.
Article
CAS
Google Scholar
Bleyzac N, Goutelle S, Bourguignon L, Tod M. Azithromycin for COVID-19: more than just an antimicrobial? Clin Drug Investig. 2020;40(8):683–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du X, Zuo X, Meng F, Han C, Ouyang W, Han Y, et al. Direct inhibitory effect on viral entry of influenza A and SARS-CoV-2 viruses by azithromycin. Cell Prolif. 2021;54(1):e12953.
Article
CAS
PubMed
Google Scholar
Menzel M, Akbarshahi H, Bjermer L, Uller L. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients. Sci Rep. 2016;6:28698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bagheri A, Moezzi SMI, Mosaddeghi P, Nadimi Parashkouhi S, Fazel Hoseini SM, Badakhshan F, et al. Interferon-inducer antivirals: Potential candidates to combat COVID-19. Int Immunopharmacol. 2021;91:107245.
Article
CAS
PubMed
Google Scholar
Li C, Zu S, Deng YQ, Li D, Parvatiyar K, Quanquin N, et al. Azithromycin protects against Zika virus infection by upregulating virus-induced type I and III interferon responses. Antimicrob Agents Chemother. 2019;63(12):e00394-19.
PubMed Central
Google Scholar
Schofield KP, Potter C, Phair J, Oxford J, Jennings R. Effect of ribavirin on influenza virus infection in ferrets. Parasites, fungi, and viruses. Springer; 1976. p. 253–70.
Google Scholar
Meier V, Bürger E, Mihm S, Saile B, Ramadori G. Ribavirin inhibits DNA, RNA, and protein synthesis in PHA-stimulated human peripheral blood mononuclear cells: possible explanation for therapeutic efficacy in patients with chronic HCV infection. J Med Virol. 2003;69(1):50–8.
Article
CAS
PubMed
Google Scholar
Khakoo S, Glue P, Grellier L, Wells B, Bell A, Dash C, et al. Ribavirin and interferon alfa-2b in chronic hepatitis C: assessment of possible pharmacokinetic and pharmacodynamic interactions. Br J Clin Pharmacol. 1998;46(6):563–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Unal MA, Bitirim CV, Summak GY, Bereketoglu S, Zeytin IC, Bul O, et al. Ribavirin shows antiviral activity against SARS-CoV-2 and downregulates the activity of TMPRSS2 and the expression of ACE2 In Vitro. bioRxiv. 2020;41(6):363.
Google Scholar
Elfiky AA. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci. 2020;253:117592.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reddy P, Edwards LR. Magnesium supplementation in vitamin D deficiency. Am J Ther. 2019;26(1):e124–32.
Article
PubMed
Google Scholar
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr (Bethesda, Md). 2019;10(4):696–710.
Article
Google Scholar
Aranow C. Vitamin D and the immune system. J Investig Med. 2011;59(6):881–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martineau AR, Jolliffe DA, Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1–44.
Article
PubMed
PubMed Central
Google Scholar
Ajabshir S, Asif A, Nayer A. The effects of vitamin D on the renin-angiotensin system. J Nephropathol. 2014;3(2):41–3.
PubMed
PubMed Central
Google Scholar
Selvaraj P, Harishankar M, Singh B, Banurekha VV, Jawahar MS. Effect of vitamin D3 on chemokine expression in pulmonary tuberculosis. Cytokine. 2012;60(1):212–9.
Article
CAS
PubMed
Google Scholar
Malek Mahadavi A. A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: implications for a potential treatment for COVID-19. Revi Med Virol. 2020;30(5):e2119-e.
Google Scholar
Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, Kong J. Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol. 2004;89–90(1–5):387–92.
Article
PubMed
CAS
Google Scholar
Ishii K, Takeuchi H, Fukunaga K, Hirano Y, Suda K, Hagiwara T, et al. Attenuation of lipopolysaccharide-induced acute lung injury after (pro)renin receptor blockade. Exp Lung Res. 2015;41(4):199–207.
Article
CAS
PubMed
Google Scholar
Takano Y, Mitsuhashi H, Ueno K. 1α,25-Dihydroxyvitamin D3 inhibits neutrophil recruitment in hamster model of acute lung injury. Steroids. 2011;76(12):1305–9.
Article
CAS
PubMed
Google Scholar
Nurminen V, Seuter S, Carlberg C. Primary vitamin D target genes of human monocytes. Front Physiol. 2019;10:194.
Article
PubMed
PubMed Central
Google Scholar
Chung C, Silwal P, Kim I, Modlin RL, Jo E-K. Vitamin D-cathelicidin axis: at the crossroads between protective immunity and pathological inflammation during infection. Immune Netw. 2020;20(2):e12-e.
Article
Google Scholar
Kuroda K, Okumura K, Isogai H, Isogai E. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Front Oncol. 2015;5:144.
Article
PubMed
PubMed Central
Google Scholar
Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Törmä H, Stahle M. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Invest Dermatol. 2005;124(5):1080–2.
Article
CAS
PubMed
Google Scholar
Tada H, Shimizu T, Nagaoka I, Takada H. Vitamin D3 analog maxacalcitol (OCT) induces hCAP-18/LL-37 production in human oral epithelial cells. Biomed Res. 2016;37(3):199–205.
Article
CAS
PubMed
Google Scholar
Currie SM, Gwyer Findlay E, McFarlane AJ, Fitch PM, Böttcher B, Colegrave N, et al. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J Immunol. 2016;196(6):2699–710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crane-Godreau MA, Clem KJ, Payne P, Fiering S. Vitamin D deficiency and air pollution exacerbate COVID-19 through suppression of antiviral peptide LL37. Front Public Health. 2020;8:232.
Article
PubMed
PubMed Central
Google Scholar
Leaf-nosed bat. Encyclopædia Britannica: Encyclopædia Britannica Online; 2009.
Saul L, Mair I, Ivens A, Brown P, Samuel K, Campbell JDM, et al. 1,25-Dihydroxyvitamin D(3) restrains CD4(+) T cell priming ability of CD11c(+) dendritic cells by upregulating expression of CD31. Front Immunol. 2019;10:600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li YC, Chen Y, Liu W, Thadhani R. MicroRNA-mediated mechanism of vitamin D regulation of innate immune response. J Steroid Biochem Mol Biol. 2014;144(Pt A):81–6.
Article
CAS
PubMed
Google Scholar
Buitrago CG, Ronda AC, de Boland AR, Boland R. MAP kinases p38 and JNK are activated by the steroid hormone 1alpha,25(OH)2-vitamin D3 in the C2C12 muscle cell line. J Cell Biochem. 2006;97(4):698–708.
Article
CAS
PubMed
Google Scholar
Pardo VG, Boland R, de Boland AR. 1alpha,25(OH)(2)-Vitamin D(3) stimulates intestinal cell p38 MAPK activity and increases c-Fos expression. Int J Biochem Cell Biol. 2006;38(7):1181–90.
Article
PubMed
CAS
Google Scholar
Esfandiar N, Alaei F, Fallah S, Babaie D, Sedghi N. Vitamin D deficiency and its impact on asthma severity in asthmatic children. Ital J Pediatr. 2016;42(1):1–6.
Article
CAS
Google Scholar
Jat KR, Khairwa A. Vitamin D and asthma in children: a systematic review and meta-analysis of observational studies. Lung India. 2017;34(4):355–63.
Article
PubMed
PubMed Central
Google Scholar
Im JH, Je YS, Baek J, Chung MH, Kwon HY, Lee JS. Nutritional status of patients with COVID-19. Int J Infect Dis. 2020;100:390–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen FH. Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res. 2018;11:25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai Q, Zhu X, Manson JE, Song Y, Li X, Franke AA, et al. Magnesium status and supplementation influence vitamin D status and metabolism: results from a randomized trial. Am J Clin Nutr. 2018;108(6):1249–58.
Article
PubMed
PubMed Central
Google Scholar
Young KA, Munroe ME, Guthridge JM, Kamen DL, Niewold TB, Gilkeson GS, et al. Combined role of vitamin D status and CYP24A1 in the transition to systemic lupus erythematosus. Ann Rheum Dis. 2017;76(1):153–8.
Article
CAS
PubMed
Google Scholar
McMullan CJ, Borgi L, Curhan GC, Fisher N, Forman JP. The effect of vitamin D on renin-angiotensin system activation and blood pressure: a randomized control trial. J Hypertens. 2017;35(4):822–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rerksuppaphol S, Rerksuppaphol L. A randomized controlled trial of zinc supplementation as adjuvant therapy for dengue viral infection in Thai children. Int J Prev Med. 2018;9:88.
Article
PubMed
PubMed Central
Google Scholar
Singh M, Das RR. Zinc for the common cold. Cochrane Database Syst Rev. 2013;6:cd001364.
Google Scholar
Fani M, Khodadad N, Ebrahimi S, Nahidsamiei R, Makvandi M, Teimoori A, et al. Zinc sulfate in narrow range as an in vitro anti-HSV-1 assay. Biol Trace Elem Res. 2020;193(2):410–3.
Article
CAS
PubMed
Google Scholar
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr. 2019;10(4):696–710.
Article
PubMed
PubMed Central
Google Scholar
Haase H, Rink L. The immune system and the impact of zinc during aging. Immun Ageing. 2009;6(1):9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dardenne M, Prasad A, Bach J-F, editors. Zinc and Thymulin. Tokyo: Springer Japan; 1990.
Maywald M, Wang F, Rink L. Zinc supplementation plays a crucial role in T helper 9 differentiation in allogeneic immune reactions and non-activated T cells. J Trace Elem Med Biol. 2018;50:482–8.
Article
CAS
PubMed
Google Scholar
Gao H, Dai W, Zhao L, Min J, Wang F. The role of zinc and zinc homeostasis in macrophage function. J Immunol Res. 2018;2018:6872621.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rink L, Kirchner H. Zinc-altered immune function and cytokine production. J Nutr. 2000;130(5S Suppl):1407s-s1411.
Article
CAS
PubMed
Google Scholar
Fu M, Blackshear PJ. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat Rev Immunol. 2017;17(2):130–43.
Article
CAS
PubMed
Google Scholar
Dáňová K, Klapetková A, Kayserová J, Šedivá A, Špíšek R, Jelínková LP. NF-κB, p38 MAPK, ERK1/2, mTOR, STAT3 and increased glycolysis regulate stability of paricalcitol/dexamethasone-generated tolerogenic dendritic cells in the inflammatory environment. Oncotarget. 2015;6(16):14123–38.
Article
PubMed
PubMed Central
Google Scholar
Nuttall JR, Oteiza PI. Zinc and the ERK kinases in the developing brain. Neurotox Res. 2012;21(1):128–41.
Article
CAS
PubMed
Google Scholar
Guo D, Zhou H, Wu Y, Zhou F, Xu G, Wen H, et al. Involvement of ERK1/2/NF-κB signal transduction pathway in TF/FVIIa/PAR2-induced proliferation and migration of colon cancer cell SW620. Tumour Biol. 2011;32(5):921–30.
Article
CAS
PubMed
Google Scholar
Bao B, Prasad AS, Beck FW, Godmere M. Zinc modulates mRNA levels of cytokines. Am J Physiol Endocrinol Metab. 2003;285(5):E1095–102.
Article
CAS
PubMed
Google Scholar
Aydemir TB, Liuzzi JP, McClellan S, Cousins RJ. Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-gamma expression in activated human T cells. J Leukoc Biol. 2009;86(2):337–48.
Article
CAS
PubMed
PubMed Central
Google Scholar