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Abstract

Background: Thymic stromal lymphopoietin (TSLP) and eosinophils are prominent components of allergic
inflammation. Therefore, we sought to determine whether TSLP could activate eosinophils, focusing on measuring
the regulation of TSLPR expression on eosinophils and degranulation in response to TSLP, as well as other
eosinophil activation responses.

Methods: Eosinophil mRNA expression of TSLPR and IL-7Ra was examined by real-time quantitative PCR of human
eosinophils treated with TNFa and IL-5 family cytokines, and TSLPR surface expression on eosinophils was analyzed
by flow cytometry. Eosinophils were stimulated with TSLP (with and without pre-activation with TNFa and IL-3) and
evaluated for release of eosinophil derived neurotoxin (EDN), phosphorylation of STAT5, and survival by trypan blue

eosinophil degranulation.

TSLP stimulation.

exclusion. A blocking antibody for TSLPR was used to confirm the specificity of TSLP mediated signaling on

Results: Fosinophil expression of cell surface TSLPR and TSLPR mRNA was upregulated by stimulation with TNFa
and IL-3. TSLP stimulation resulted in release of EDN, phosphorylation of STAT5 as well as promotion of viability and
survival. TSLP-stimulated eosinophil degranulation was inhibited by a functional blocking antibody to TSLPR.
Pre-activation of eosinophils with TNFa and IL-3 promoted eosinophil degranulation at lower concentrations of

Conclusions: This study demonstrates that eosinophils are activated by TSLP and that eosinophil degranulation in
response to TSLP may be enhanced on exposure to cytokines present in allergic inflammation, indicating that the
eosinophil has the capacity to participate in TSLP-driven allergic responses.
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Background

Thymic stromal lymphopoietin (TSLP) is a cytokine which
plays a key role in allergic diseases such as asthma, atopic
dermatitis, allergic rhinitis, nasal polyposis, and chronic al-
lergic keratoconjunctivis [1-5]. TSLP is a member of the
hematopoietic cytokine family that includes a number of
cytokines important in allergic disease including IL-2, IL-4,
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IL-7, and IL-13. TSLP binds with high affinity to a hetero-
dimeric receptor consisting of the IL-7 receptor - alpha
chain (IL-7Ra) and TSLPR (TSLP receptor also known as
cytokine receptor-like 2, CRL2). As a member of the hema-
topoietin receptor family, signaling through activation of
TSLPR results in downstream phosphorylation of Signal
Transducers and Activators of Transcription (STAT) pro-
teins including, most commonly, STAT5, but also STATSs
-1, -3, -4 and -6 depending on the cell type examined
[6].

A role for TSLP in allergic diseases was initially attribu-
ted to its ability to promote TH2 differentiation through a
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dendritic cell-mediated pathway [7,8]. Subsequently, how-
ever, it has been shown that TSLPR is more broadly
expressed by a variety of hematopoietic cells (e.g., T cells,
B cells, mast cells, eosinophils) as well as structural cells
(e.g., epithelial cells) [9-12]. Regulation of TSLPR expres-
sion in these cells has not been well studied. In allergic
diseases, these TSLPR-expressing cells exist in a milieu of
pro-allergic and pro-inflammatory cytokines and other
factors (e.g., allergens, bacterial products, lipid mediators)
that have the potential to modulate expression of the
TSLPR, yet the biological consequences of enhanced ex-
pression have not been well examined [13].

Allergic diseases are typically characterized by eosino-
philia, both in local tissues and peripheral circulation. In
many cases, eosinophils and their granule-associated
basic proteins (e.g., EDN, eosinophil cationic protein)
are associated with disease severity, yet specific mechan-
isms promoting eosinophil degranulation are not com-
pletely understood [14].

Eosinophils have been shown to express IL-7Ra [2,15].
A recent study reported expression of TSLPR on eosino-
phils and increased survival and cytokine secretion by
TSLP stimulated eosinophils [11]. Here we present the
novel findings that TSLP stimulation of eosinophils can
also promote TSLPR dependent and TSLP dose-
dependent release of EDN as well as phosphorylation of
STATS5. Furthermore, we demonstrate that activation of
eosinophils with cytokines present in allergic inflamma-
tion (TNFa and IL-3) upregulate TSLPR gene expression
(but not IL-7Ra) in a dose dependent manner. This
upregulation corresponds to increased eosinophil surface
expression of TSLPR and enhanced sensitivity to TSLP
mediated degranulation.

Materials and methods

Human subjects

Peripheral blood was obtained from normal or allergic
and/or asthmatic donors ranging in age from 18 to
55 years. Informed consent was obtained before partici-
pation and the study was approved by the University of
Wisconsin Health Sciences Institutional Review Board,
Protocol Number H 2008—0096.

Cell purifications

Eosinophils were isolated from heparinized blood using
magnetic bead negative selection, as described previ-
ously [16]. Briefly, blood was separated by density cen-
trifugation (Percoll, 1.090 g/ml) to obtain peripheral
blood mononuclear cells (PBMC) and granulocytes.
The granulocytes were resuspended and incubated with
anti-CD16, anti-CD14, and anti-CD3 magnetic beads
(Miltenyi Biotec, Auburn, CA). Negative selection was
performed using an AutoMACS® separator (Miltenyi
Biotec). The resulting eosinophils were >99% pure and
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>97% viable. CD3+ T cells were purified from PBMC
using Miltenyi Pan T cell Isolation Kit II (Miltenyi
Biotec).

Analysis of TSLPR and IL-7Ra gene expression by
quantitative real-time PCR

Purified eosinophils (1 x 10°/ml) were incubated with ei-
ther media alone or TNFa and/or IL-3 (10 ng/ml each;
R&D Systems, Minneapolis, MN) for 24 h at 37°C. Total
RNA was extracted from 1x10° eosinophils using the
RNeasy mini kit (Qiagen, Valencia, CA) and reverse
transcribed using 400 U of Super Script III reverse tran-
scriptase (Invitrogen, Carlsbad, CA) for 60 min at 37°C
in the presence of random hexamer primers (Promega,
Madison WI). Real-time quantitative PCR was per-
formed in the Applied Biosystems 7500 sequence de-
tector using human TSLPR-specific primers (CRLF2;
Applied Biosystems, Foster City, CA) or human IL-7Ra
specific primers (IL-7R; Applied Biosystems) and Taq-
Man probes (Applied Biosystems). Based on its similar
transcription efficiency to the receptor target gene and
its consistent expression among treatment groups, the
reference gene, B-glucuronidase (GUS) was chosen to
normalize the samples. The efficiency of the Tagman
assay was determined by assaying serial 10-fold dilutions
of target cDNA. All samples were amplified in duplicate,
and the mean was obtained for further calculations. The
data are expressed as fold inductions using the compara-
tive cycle threshold (Ct) method in which ACt=Ct of
the chemokine gene minus Ct of GUS; AACt=ACt of
activated cells at the indicated time points minus ACt
of untreated cells. In one subject, the IL-7Ra mRNA
quantitative real time PCR did not meet our minimum
cycle threshold value criterion and was excluded from
our data analysis.

Flow cytometry

Purified eosinophils (1 x 10°/ml) were pre-activated with
TNFa and IL-3 (10 ng/ml each) or media alone for 16 h
at 37°C. CD3+ T cells were activated with anti-CD3
/CD28 beads (Dynabeads, Invitrogen) for 72 h at 37°C.
Prior to staining, cells were resuspended in HBSS-BAP
(Hanks Buffered Salt Solution, 1 g/L bovine serum albu-
min, 0.5 g/L sodium azide, and 18 mg/L phenylmethyl
sulfonyl fluoride) and non-specific binding of IgG was
blocked with normal goat IgG, followed by
neutralization of endogenous biotin with streptavidin
(Fisher Scientific, Pittsburgh, PA). After staining with
goat anti-TSLPR (R&D Systems), a biotinylated rabbit
anti-goat IgG secondary antibody (Jackson ImmunoRe-
search Laboratories, Inc., West Grove, PA) was used and
detected using streptavidin conjugated to phycoerythrin
(PE; Fisher Scientific). Propidium iodide was added to
each tube to determine viability. Detection of phospho-
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STAT5 was performed using intracellular flow cyto-
metric analysis. Eosinophils were incubated with TSLP
(0.5-1.0 pg/ml; R&D Systems), IL-5 (1 ng/ml), or GM-
CSF (1 ng/ml) for 15 min, fixed with 2% paraformalde-
hyde, permeabilized with 90% methanol, and stained
with anti-phospho-STAT5-PE (Tyr -°**, clone 47; BD
Biosciences, San Jose, CA) or mouse IgG isotype control.
Data was acquired using a FACSCalibur (BD Bio-
sciences) based on gating of viable cells only (except
when cells were fixed for intracellular analysis; 10,000
cells counted/tube) and was analyzed using WinMDI
(Scripps Research Institute, La Jolla, CA).

Eosinophil degranulation assay

Eosinophils (1 x10°/ml) were incubated with either
TSLP (0.2-2.0 pg/ml), EMLP (10~ M), IL-5 (1 ng/ml)
or buffer on 96-well tissue culture plates in 200 pl of
HBSS + 0.03% gelatin/well for 4 h at 37°C. In blocking
experiments, eosinophils were pre-incubated with goat
anti-TSLPR antibody (2.5 pg/ml; AF981, R&D Systems)
or goat IgG control prior to treatment as above. In the
pre-activation assays, eosinophils were incubated over-
night at 37°C with a combination of TNF« and IL-3 (0.1
and 1 ng/ml, respectively) and washed prior to challenge
with TSLP. Non-preactivated cells from the same donor
were challenged separately for TSLP-stimulated EDN re-
lease as described above on the day of purification. Total
EDN values were determined by lysis of eosinophils with
0.1% Triton X-100. EDN was measured by ELISA (MBL
International, Woburn, MA).

Eosinophil survival assay

Purified eosinophils (1-1.5 x 10°/ml) were suspended in
RPMI 1640 supplemented with 5% Fetal Bovine Serum,
100 U/ml penicillin, 100 pg/ml streptomycin, 2 mM glu-
tamine, and 10 mM HEPES and incubated with either
IL-5 (0.1 ng/ml), TSLP (0.0625-1 pg/ml) or media for
48 h at 37°C. Viability was evaluated using trypan blue
exclusion and the cells were counted using a hemacyt-
ometer. Percent survival was determined by dividing the
number of viable cells at a given incubation time by the
original number of viable cells placed into the well at
time zero. Percent viability was determined by dividing
the number of viable cells at a given incubation time by
the total number of cells (alive + dead) in the well at the
given time [17].

Eosinophil superoxide anion production assay

Purified eosinophils (1 x 10°/ml) were pre-activated with
TNFa and IL-3 (10 ng/ml each; R&D Systems) or media
alone for 24 h at 37°C. Eosinophils were washed and
resuspended in HBSS with 0.1% gelatin, incubated at 37°
C with 1.2 mg/mL ferro-cytochrome C (Sigma; St. Louis,
MO) and stimulated with either buffer, 1 pg/mL TSLP,
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1uM EMLP or 1 ng/ml phorbol myristate acetate (PMA,
Sigma), as previously described [18]. Superoxide anion
production was monitored for 1 h as a colorimetric
change at 550 nm. The superoxide production was
reported as nmol of cytochrome C per 1.0 x 10° cells,
calculated as previously described [18].

Eosinophil chemotaxis

Purified eosinophils (1 x 10°/ml) were pre-activated with
TNFa and IL-3 (10 ng/ml each; R&D Systems) or media
alone for 24 h at 37°C. Eosinophils were washed and
resuspended in HBSS with 0.1% gelatin and cultured in
the upper compartment of 24-well 5.0 um Transwell
plates (Costar; Cambridge, MA) as previously described
[19]. The bottom compartment contained HBSS with
0.1% gelatin alone or supplemented with either 100 ng/
ml eotaxin (Biosource) or 1 pg/ml TSLP. After incuba-
tion at 37°C for 1 h, cells were counted in the bottom
chamber and the percentage of migration calculated as
the number of cells in the bottom chamber divided by
the initial number added to the upper chamber.

Statistical analyses

Paired t-tests were performed for pre-planned compari-
sons to generate two tailed P values using SigmaPlot
(Systat Software, Inc.). A probability of less than 0.05
was considered statistically significant. Cytokine syner-
gistic interaction was evaluated by comparing the calcu-
lated additivity (response to TNFa alone + response to
IL-3 alone) with the experimental additivity (response to
simultaneous stimulation with TNFa and IL-3) by a
paired ¢-test analysis. Statistics on mRNA data were per-
formed after log transformation.

Results

TSLP activation of eosinophils

Given the role of eosinophil granule proteins in the
pathophysiology of allergic diseases, we investigated the
ability of TSLP to promote eosinophil degranulation.
Eosinophils were incubated for 4 h with various concen-
trations of TSLP (0.2-2 pg/ml) and with IL-5 (10 ng/ml)
and FMLP (107 M) as positive controls. Stimulation of
eosinophils with TSLP (1 pg/ml) significantly increased
release of EDN relative to unstimulated eosinophils
(Figure 1A, 4.4+0.8% vs. 1.9+0.3%, p=0.03). This
amount of EDN release was comparable to stimulation
with 10 ng/ml of IL-5 (4.8 +0.8% vs. 4.4 +0.8%). TSLP
stimulated release of EDN was dose dependent
(Figure 1B). No significant increase in EDN release,
compared to untreated eosinophils, occurred until
0.5 pg/ml of TSLP was used (p =0.02). EDN release plat-
eaued at 4.4% with 1.0-2.0 pg/ml TSLP concentrations.
A blocking antibody to TSLPR resulted in a 59.9% re-
duction in TSLP stimulated EDN release (p = 0.05), while
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Figure 1 TSLP stimulates eosinophil degranulation, as
measured by EDN release, through a TSLPR specific interaction.
(A) Stimulation of eosinophil EDN release, as a percent of total EDN,
by TSLP (1 pg/ml) is compared to IL-5 (1 ng/ml) and FMLP (1077 M)
stimulated release (n=6). (B) The dose response curve of EDN
release, as a percent of total EDN minus unstimulated release, from
stimulation with TSLP (0 pg/ml, n=4; 0.2 pg/ml, n=3; 0.5 ug/ml,
n=3; 1.0 ug/ml, n=4; 2.0 yg/ml, n=3). (C) A functional blocking
antibody to TSLPR or isotype control (2.5 pg/ml) was incubated with
eosinophils prior to stimulation with TSLP. The data are expressed as
the percent of TSLP stimulated EDN release (n = 3). *Statistically
different from unstimulated (p < 0.05).

an isotype control IgG antibody had no effect
(Figure 1C). This confirmed the specificity of the TSLP
interaction with TSLPR on eosinophils despite the high
concentration of TSLP.
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Stimulation with TSLP promoted both eosinophil via-
bility and survival. As shown in Figure 2A, TSLP stimu-
lation for 48 h resulted in significantly enhanced viability
at concentrations of 62.5 ng/ml and above (p < 0.05) and
enhanced survival at 125 ng/ml and above (p < 0.05). IL-
5 stimulation (10 ng/mL) was used as a positive control
(84.6 £5.3% and 86.4 + 2.6%, p =0.002 for 48 h).

In eosinophils, STAT5 activation has been shown to
enhance survival [20]. In other cell types, such as T cells
and mast cells, TSLP mediates STAT5 activation [7,8].
To examine this pathway of TSLPR signaling in eosino-
phils, we used flow cytometry for detection of phos-
phorylated STAT5. In Figure 2B, phosphorylated STAT5
was observed with stimulation by 1 pg/ml TSLP
(AMFI =10, range=9%3), 10 ng/ml IL-5 (AMFI=30.6)
and 10 ng/ml GM-CSF (AMFI =17.4) compared to un-
stimulated cells. Some phosphorylation of STAT5 was
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Figure 2 Effect of TSLP on eosinophil survival and
phosphorylation of STAT5. (A) The dose response curve of the
effect of TSLP on eosinophil survival, shown as percent survival (0-
1 pg/ml, n=4). (B) Effect of TSLPR on eosinophil STAT5
phosphorylation. Histogram of intracellular flow cytometric analysis
of phosphotyrosine STATS in eosinophils cultured for 15 min in
medium (lightest grey line) or TSLP (1 pg/ml, black line with grey
shading), compared to stimulation with IL-5 (10 ng/ml, medium grey
line) and GM-CSF (10 ng/ml, dark grey line). Data are representative
of eosinophils from 3 subjects. The histograms are normalized to
number of events. *Statistically different from unstimulated

(p < 0.05).
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also detected in response to 0.5 pug/ml TSLP stimulation
(AMFI =3 + 1, histogram not shown).

Eosinophil expression of TSLPR (mRNA and protein):
effect of cytokine pre-activation

We sought to determine whether upregulation of TSLPR
might enhance activation and decrease the concentra-
tion of TSLP required. Expression of TSLPR mRNA was
examined in both untreated and activated eosinophils.
For activation of eosinophils, we focused on cytokines
that are typically expressed in allergic inflammation in-
cluding the proinflammatory cytokine, TNFa, and the
IL-5 family cytokine, IL-3 (alone and in combination).
The results of the quantitative real-time PCR are shown
in Figure 3A. Expression of TSLPR mRNA was low, but
detectable, in untreated eosinophils; however, both cyto-
kines increased expression of TSLPR within 24 h, with
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greater increases from a combination of TNFa and IL-3.
The mRNA expression of TSLPR was induced 5-fold by
TNFa (p<0.001) and 32-fold by IL-3 (p=0.002); how-
ever, the combination of TNF«a and IL-3 induced a sig-
nificant synergistic increase of 991-fold (p <0.001).
Since the TSLP functional receptor consists of a hetero-
dimeric complex of TSLPR and IL-7Ra, we also exam-
ined the eosinophil mRNA expression of IL-7Ra
(Figure 3B). Expression of IL-7Ra was detectable, but
did not vary significantly with any of the cytokine
treatments.

Time course (3—-48 h) and dose response (0.1-10 ng/
ml) experiments were also conducted (Figures 3C & D
respectively). The time course experiments showed that
pre-activation with TNFa and IL-3 (10 ng/ml) resulted
in increased TSLPR mRNA expression that peaked at
4 h and remained elevated through 48 h. Dose response
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Figure 3 Eosinophil expression of TSLPR and IL-7Ra. Quantitative real-time PCR for expression of mRNA for TSLPR (A) or IL-7Ra (B) was
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curves showed that this increased expression was dose
dependent and that the combination of TNFa and IL-3
was more potent than either cytokine alone (p < 0.05 at
1 and 10 ng/ml).

As unstimulated eosinophils had low surface expres-
sion of TSLPR and the combination of TNFa and IL-3
significantly upregulated TSLPR mRNA, we examined
surface TSLPR protein expression following overnight
incubation with these cytokines (10 ng/ml). CD3+ T
cells were incubated for 72 h with anti-CD3/CD28
coated beads, previously shown to upregulate TSLPR on
T cells, as a positive control [9]. In Figure 3E, histograms
show a shift in mean fluorescence intensity of TNFa/IL-
3 activated eosinophil surface staining for TSLPR com-
pared to unstimulated eosinophils (AMFI =14, range =
6—14; left histogram) and the shift in mean fluorescence
of ant-CD3/CD28 activated CD3+ T cells compared to
untreated T cells (AMFI = 3, right histogram).

Effect of cytokine-mediated pre-activation on
TSLP-stimulated eosinophil function

Since stimulation with TNFa and IL-3 upregulated
TSLPR, we examined whether pre-activation would
decrease the threshold for TSLP mediated degranulation.
As TNFa and IL-3 activation of eosinophils also causes
dose dependent EDN release (data not shown) we used
the lowest concentrations of TNFa and IL-3 that
resulted in upregulation of TSLP mRNA while minimiz-
ing background EDN release. Figure 4A shows that
pre-activation of eosinophils with TNFa (0.1 ng/ml) and
IL-3 (1.0 ng/ml) resulted in enhanced sensitivity to
TSLP-mediated degranulation at lower concentrations of
TSLP (50-500 ng/ml tested) which was statistically sig-
nificant compared to unstimulated eosinophils at 100
and 500 ng/ml of TSLP (p=0.05). As shown in
Figure 4B and C, TSLP did not promote either super-
oxide production or chemotaxis even with TNFa and IL-
3 pre-activation. We were unable to evaluate the effect
of pre-activation with TNFa and IL-3 on TSLP-
stimulated survival and STAT5 phosphorylation because
of the direct effect of IL-3 on these functions.

Discussion

We have demonstrated for the first time that eosinophils
respond directly to TSLP with degranulation (release of
EDN) and activation of STAT5. Furthermore, we have
shown that eosinophil expression of both TSLPR mRNA
and surface protein can be markedly upregulated by a
combination of TNFa and IL-3, cytokines present in al-
lergic inflammation. More importantly, we went on to
demonstrate that upregulation of eosinophil surface ex-
pression of TSLPR significantly enhanced sensitivity of
eosinophils to TSLP-mediated degranulation. While we
were also interested in whether TNFa and IL-3 pre-
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Figure 4 Effect of pre-activation with TNFa and IL-3 on TSLP-
mediated eosinophil activation. (A) The dose response curve of
EDN release (as a percent of total EDN minus unstimulated release)
in response to stimulation with TSLP (25-500 ng/ml, n=3), following
pre-activation for 24 h with TNFa and IL-3 (0.1 ng/ml and 1 ng/ml
respectively, filled circles) is compared to EDN release from TSLP
stimulated eosinophils (250-1,000 ng/ml) in the absence of
pre-activation (open circles, n=3-4). *Statistically different from
unstimulated (p < 0.05). (B) Superoxide production expressed as
nmol cytochrome C in response to TSLP (1 pg/ml) is compared to
unstimulated control and positive controls (FMLP, PMA) with and
without pre-activation with TNFa/IL-3 (10 ng/ml; n=3). (C) Percent
chemotaxis in response to TSLP (1 pg/ml) with and without pre-
activation with TNFa/IL-3 (10 ng/ml) is compared to unstimulated
control and eotaxin positive control (100 ng/ml, n = 3). *Statistically
different from unstimulated (p < 0.05).




Cook et al. Clinical and Molecular Allergy 2012, 10:8
http://www.clinicalmolecularallergy.com/content/10/1/8

activation would enhance TSLP activation of eosinophil
survival and STAT5 phosphorylation, we were unable to
evaluate these functions as IL-3 stimulation of eosino-
phils promotes both, survival and STAT5 phosphoryl-
ation [21].

Interestingly, while TNFa and IL-3 had a profound ef-
fect on upregulation of TSLPR mRNA, they did very lit-
tle to modulate expression of mRNA for IL-7Ra. This
suggests that, while both the TSLPR and IL-7Ra are
required for high affinity binding and signaling via TSLP,
TSLPR could be regulated independently from IL-7Ra
resulting in expression of TSLPR that is not coupled
with the heterodimeric complex required for signaling.

It is notable that the concentration of TSLP (0.5-
1.0 pg/ml) required for activation of eosinophil degranu-
lation (in the absence of pre-activation) is greater than
the concentrations of GM-CSF and IL-5 (10 ng/ml)
required to promote comparable degranulation
responses. However, the activation of the IL-7 receptor
complex on eosinophils (which shares IL-7Ra with the
TSLPR) similarly required high concentrations of IL-7,
50 nM or 0.9 pg/ml [15]. One possible explanation is
that additional factors present in the in vivo microenvir-
onment during allergic inflammation prime eosinophils
to respond to lower concentrations of TSLP. This is sup-
ported by our observation that pre-activation of eosino-
phils with TNFa and IL-3 enhances both TSLPR
expression and sensitivity to TSLP stimulation in vitro,
suggesting that TSLP responses may be reserved for
eosinophils in an inflammatory environment. Another
possibility is that eosinophil responses to TSLP are bio-
logically programmed to be more conserved and less
promiscuous, reserved for responses to a bolus of TSLP
released directly to tissue eosinophils in the activated
epithelium.

In asthma and allergic diseases, eosinophil recruit-
ment, survival, and cytotoxic effector functions are
largely regulated by IL-5 family cytokines (IL-3, IL-5,
GM-CSF). Besides direct effects on eosinophil activation,
these cytokines enhance eosinophil responsiveness to
second stimuli, such as chemokines and FMLP [22]. The
mechanism for priming involves activation of signaling
molecules such as Lyn and ERK1/2. Studies have shown
that in vitro priming of blood eosinophils with IL-5 fam-
ily cytokines can result in eosinophils with a similar
phenotype to airway eosinophils [23]. Our studies dem-
onstrate a comparable priming effect of TNFa and IL-3
for TSLP mediated eosinophil degranulation. The TNFa
and IL-3 pre-activation was shown to increase TSLPR
mRNA and surface expression. However, it is possible
that other intracellular signaling events are also primed
to facilitate TSLP mediated activation of eosinophils.

Our findings differ from a recently published study,
using lower concentrations of TSLP (and ECP as a
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measure of degranulation) which reported that stimula-
tion of eosinophils with TSLP was unable to promote
eosinophil degranulation and phosphorylation of STAT5
[11]. These discrepancies could be explained by differ-
ences between our approaches, including concentrations
of TSLP tested, as well as differences in experimental
protocols such as the degranulation and phospho-
STAT5 detection. EDN is a more sensitive measure of
eosinophil degranulation than ECP because it has a
higher soluble recovery from lysed cells [24]. However,
our study supports the finding of Wong, et al. that TSLP
can promote viability (as well as survival) at lower con-
centrations than are required for degranulation. Based
on the literature, promotion of eosinophil survival by IL-
5 family cytokines occurs through a pathway involving
either STAT5 or STAT3 phosphorylation [20]. Studies in
T cells and mast cells have demonstrated that TSLPR ac-
tivation results in STAT5 phosphorylation [7,8]. Al-
though Wong, et al. did not detect STAT5
phosphorylation by TSLP in eosinophils using Western
blot, we utilized flow cytometry to detect phospho-
STATS5 in eosinophils which may be a more sensitive
technique and is more consistent with the findings in T
cells and mast cells.

Studies using various genetically deficient mice have
established the requirement for eosinophils in both local
skin and systemic inflammatory responses to intrader-
mally administered TSLP [25]. These studies demon-
strated that T cells and eosinophils were required,
whereas mast cells and TNF-a were dispensable. In a
separate study, mice with keratinocyte- or lung-specific
overexpression of TSLP were shown to have an atopic
dermatitis- or asthma-like phenotype, characterized by
eosinophilia, while mice lacking the TSLP receptor have
considerably attenuated disease, lacking eosinophilia
[26]. In a human study, focusing on nasal polyposis, it
was reported that high expression of TSLP in nasal
polyps strongly correlated to eosinophils and IgE sug-
gesting a potential role for TSLP in the pathogenesis of
nasal polyps by regulating Th2 type and eosinophilic in-
flammation [4]. While these studies establish a correl-
ation between TSLP and eosinophils, they fall short of
establishing a direct link between eosinophil activation
and TSLP.

Conclusion

Our studies demonstrate that TSLP, previously thought
to preferentially target dendritic cell and T cell interac-
tions, can also promote eosinophil activation and de-
granulation, and that eosinophil activation in response
to TSLP may be enhanced on exposure to cytokines
present in allergic inflammation. It is difficult to predict
the role of TSLP activation of eosinophils in allergic dis-
eases, when so many other factors are present that could
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similarly promote eosinophil degranulation and activa-
tion. Activation of eosinophils via receptors for cyto-
kines, immunoglobulins, and complement can lead to
the secretion of an array of proinflammatory cytokines,
growth factors, chemokines and lipid mediators. Rather
than TSLP being singularly important in eosinophil acti-
vation, TSLP may be involved in altering eosinophil
responses in the presence of other activating influences.
However, it is clear from our data and other recent stud-
ies that the eosinophil has the capacity to participate in
TSLP-driven allergic responses.
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